ЛЕЙБНИЦ И МАЛЕНЬКИЙ ЭТЮД О СОВКОВОЙ ЛОПАТЕ
Притомили блогеры.
Ей Богу!
От старых и плохо выбритых, до тех, кто еще только-только вылупился из пеленок, но все и вся уже в этом мире знают.
С их истерикой и эзотерикой.
С каждочасной их сменой настроений.
Порождающих не знание, но густой рой меланхолии и неврастеников дня!
А так хочется строгой и жестко и скупо выверенной мысли.
Хочется профессионализма, строгой дисциплины ее.
В суровый час дня только труд и она, точная и трезво выверенная, нам спасательный труд и компас в этом мире, где пылают пожары магнитных бурь и компасы, по дешевке купленные в супермаркете чар и грез уже негодны ни к черту.
Лейбница читаю.
Живительную мысль старого идеалиста, разом — большого диалектика и изобретателя интегрального исчисления, которое все мы в институтах нашей молодости проходили, а потом в массе своей в сумерках буден и добывания куска хлеба забыли.
Эй, малыш! Вижу я — инструмент тебе этот понравился?
А коль так, в день текущий и завтрашний глядя — уж ты не грусти…
Знай, уладится все у нас
и устаканится…
И не только на Марсе,
но также на улице нашей,
что снегом пока запорошена,
яблони будут пожаром веселым цвести!
ОБ УНИВЕРСАЛЬНОМ СИНТЕЗЕ И АНАЛИЗЕ,
ИЛИ ОБ ИСКУССТВЕ ИЗОБРЕТЕНИЯ И СУЖДЕНИЯ
(из Лейбница)
«…Из всего этого становится также ясным, каково будет различие между синтезом и анализом. Синтез имеет место тогда, когда, исходя из принципов и прослеживая порядок истин, мы обнаруживаем некоторые прогрессии и как бы таблицы или даже иногда устанавливаем общие формулы, по которым затем могли бы отыскиваться данные (obla-ta). Анализ же основания данной проблемы возвращает к принципам так, словно уже нами или кем-либо другим не было ничего открыто. Более важен синтез, ибо его осуществление имеет непреходящее значение, тогда как при анализе мы, как правило, занимаемся разрешением частных проблем; но пользование [результатами] уже осуществленного другими [исследователями] синтеза и уже открытыми теоремами требует меньше искусства, чем анализ, позволяющий все выводить через себя, особенно если учесть, что наши собственные открытия или открытия других [лиц] имеют место не так уж часто и не всегда нам под силу совершать их.
Существует два вида анализа: один общеизвестный, через скачок, и им пользуются в алгебре, другой особенный, который я называю редуцирующим (reductrieis) и который значительно более изящен, но мало известен. Анализ в высшей степени необходим для практики, когда мы решаем встающие перед нами проблемы; с другой стороны, тот, кто может способствовать теории, должен упражняться в анализе до тех пор, пока не овладеет аналитическим искусством; впрочем, было бы лучше, если бы он следовал синтезу и затрагивал только те вопросы, к которым его вел бы сам порядок [исследования], ибо тогда он продвигался бы вперед всегда с приятностью и легкостью и никогда не чувствовал бы затруднений или же не обманывался бы успехом и вскоре достиг бы гораздо большего, чем ожидал сам когда-либо вначале. Обыкновенно же плод размышления портят поспешностью, стремясь скачком перейти к более трудным вопросам, но затратив много труда, ничего не достигают. Известно, что [наиболее] совершенен именно тот метод исследования, при котором мы способны предвидеть, к какому результату мы придем. Но заблуждаются те, которые думают, что когда происхождение открытия становится явным, то оно фиксируется аналитически, а когда остается скрытым,— то синтетически.
Я часто замечал, что изобретательские способности у одних бывают в большей степени аналитическими, а у других — комбинаторными. Комбинаторная, или синтетическая, [изобретательность] имеется по преимуществу там, где надо использовать какой-либо предмет или найти ему приложение, например, когда надо придумать, как приладить данную намагниченную иглу к коробке; напротив, по преимуществу аналитическая имеется там, где задан вид изобретения, или же там, где, предполагая [определенную] цель, надо найти средства. Однако редко анализ бывает чистым, ибо в поисках средств мы по большей части наталкиваемся на искусственные приемы, проистекающие от других [людей] или от нас самих, уже изобретенные когда-то случайно или по какой-либо причине и выхватываемые или из нашей памяти, или из общения с другими [людьми], словно из таблицы или свода изобретений, и [мы] их тут же применяем; но ведь это— нечто синтетическое. Впрочем, комбинаторное искусство, в особенности для меня, такая наука (которая также может быть названа вообще оперированием знаками [characteristica sive speciosa], в которой речь идет о формах вещей или о формулах универсума, то есть о качестве вообще, или о сходном и несходном, так как те или другие формулы происходят от взаимокомбинирования самих А, В, С и т. д. (репрезентирующих либо количество, либо что-то другое). И [эта наука] отличается от алгебры, которая исходит из формул, приложимых [только] к количеству, или из равного и неравного. Поэтому алгебра подчиняется комбинаторике и постоянно пользуется правилами, которые, однако, являются более общими и имеют место не только в алгебре, но и в искусстве дешифрирования, в различных видах игр, в самой геометрии, рассуждающей по древнему предписанию линейно, [и] наконец, всюду, где имеются отношения подобия».